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Formation of hairpins and band broadening in gel electrophoresis of DNA
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The dynamics of a long DNA molecule undergoing constant-field gel electrophoresis is considered theoreti-
cally on the basis of the reptation theory. A generalized theoretical approach taking into account the possibility
of a branched tube structure is presented. It is shown that in a wide range of electric fields a branched
conformation is more stable than a linear conformation assumed by the standard biased reptation model. The
process of nucleation of a branched structure from a linear structure is considered analytically in detail. The
field dependencies of both longitudinal and transverse diffusion constants are discussed within the framework
of the proposed two-states model. It is predicted that the longitudinal diffusion constant shows a sharp maxi-
mum in the weak-field regimg¢S1063-651X96)09612-3

PACS numbd(ps): 87.10+¢€, 83.10.Nn

[. INTRODUCTION linear DNA molecules in a branched conformation consid-
ered in Sec. IV. The problem of hairpin nucleation is ad-
The interpretation of the dynamics of long DNA mol- dressed in Sec. V. The results are then used to predict the
ecules undergoing constant-field gel electrophoresis is a fadield dependence of the diffusion constants.
cinating problem that attracts considerable attenfibr§|.
The reptation modgl9], which assumes that a chain is mov- Il. BIASED REPTATION WITH FLUCTUATIONS
ing along a curvilinear tube, has been successfully used AND DIFFUSION
[1,4—€ to predict the molecular weight and the field depen-
dence of the DNA mobility. However, a much more complex
dynamics has been recently observed both in comg@fer
and real[10] experiments: if the field is strong enough, the
;P;alllr(l);)l:teedn ;?;umnsdhfggiggggglﬂziﬁgi iltsrgn%f;? fz;tggz?rs sented below we obtain both, and the transverse diffusion
randomly branched treelike conformation has been propose%onStanDY‘
to describe a chain with hernifg]. The fractal structurg7] )
imposes a mobility independent of molecular weight. How- A. The model and the scaling arguments
ever a detailed theoretical description of the polymer dynam- | et us consider a long DNA molecule immersed in large
ics in the branched conformation is Iacking. More impor- porous gel; the pore Siz®e is |arger than the Kuhn segment
tantly, there is an obvious discontinuity between thep. The molecule can then be considered as a Gaussian chain
reptation theories for weak fields and the speculations cornof N> 1 subunits of size (these blobs are called segments
cerning hooked and branched conformatipng] for stron-  below). The reptation concept reduces the effect of the gel
ger fields. strands on the chain motion to a virtual curvilinear tube con-
The aim of this paper is to partially fill this gap. The main fining the chain. The tube diameter & and its length is
idea of the paper is that branched conformations might be =Na. An electric field(applied in thex direction) induces
important also for weak fields. We show that hairpins area drift along the tube axis with curvilinear velocifg]
irreversibly nucleating from a linear structure with a field-
dependent rate. The branched conformation that develops hy
from this nucleation is stable if the reduced fielis higher UTENT
than a critical value** ~1/N%®, In the ranges** <e<1 we
propose a two-state model where one state is a linear confowhere r, is the segment relaxation timh, is the projection
mation and the other one a branched conformation. One aif the tube end-to-end distance onto the field direction, and
the important implications of the model is that the randome=qEa/(kgT) is the reduced fieldhereq is the charge per
diffusive motion responsible for band broadening is dramatisegment The center-of-mass velocity is then
cally enhanced in the region where both states are in compe-
L. . . 2
tition. As a result the diffusion constant shows a peak as a . h, ea hy
function of the fielde. UL 7 (Nay? @
In Sec. Il we consider the field dependence of the longi-
tudinal and transverse diffusion constants for the linear statAssuming thatr, is the unit time, andh the unit length, we
(with no hairping using the biased reptation model with fluc- get the mobility[1] u=(x)/e=(hZ2)/N?. In a weak field the
tuations(BRF) [4—6]. Section Il is devoted to the dynamics chain statistics is nearly Gaussian, so tﬁai)zNazlfs and
of circular DNA molecules, which is very similar to that of the mobility is = 1/(3N).

We discuss here the random diffusive motion of a linear
chain undergoing constant-field electrophoresis. The longitu-
dinal diffusion constantD, has been already calculated
within the BRF mode[6]. With a generalized treatment pre-
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The effect of the electric field induces an orientation ofin the curly brackets accounts for the random conformation
the new parts of the tube that are being created at the chaof newly created parts of the tube, whereas the second term

head; the orientation order parametge(cos)=(h,)/N is
predicted by the BRF theoiy,5] in a self-consistent way as
n~€'? if 1>¢e>1/N. Therefore in this electric-field range
h,= 7Na>N¥2a, and the tube is stretched along thexis

describes théweak orientation due to the field. A similar
equation can also be written for the distribution of the
projection of the end-to-end vecthy ; the only difference is
thatv™ (hy)=—v(h,/N)=—B/h, as there is no field orien-

on many Gaussian sizes. Thus the mobility is proportional tdation in the transverse direction. By rescaling of E).we

the square of the order parameter:

p=n"~e. 3

However the center-of-mass velocity is not exactly constant
in this regime since the end-to-end chain projection is still

fluctuating: h,= 7N+ 6h,, where (sh2)~Na?, as for a

Gaussian chain. The corresponding fluctuation of the cente

of-mass velocity i§see Eq.(2)]

sh,

Sx=2en N

(4)

get

*

(8h,(0)sh,(1))dt=C

B’

whereC is a universal numerical factor. Using also E@.
Iggnd (5) we thus get back the scaling estimate, Ej.
The analogous correlator for tyecomponent is

(10

D*
(hy(0)h,(t))dt=C -
y

(11)

The characteristic relaxation time of the velocity fluctuation The ratio of the diffusion constants is then

is clearly the drift time taken by the chain to reptate over the

whole tube lengthr~N/v. The longitudinal diffusion con-
stant, defined as

0= [ skt (5)
0
can thus be estimated using E8) as[6]
Dy~ 7(8X)%~ e~ 2. (6)

D,/Dy=4p5B5=9/4.

This ratio seems to be in good quantitative agreement with
the measuremen{d 1] on A-DNA in 0.7% agarose gel in the
field regionE=1-2 V/icm.

Ill. DYNAMICS OF A LONG RING POLYMER UNDER
AN ELECTRIC FIELD

In this section we give a simple description of the gel

A similar estimate is also possible for the transverse diffu-electrophoresis of a ring polymer using reptation ideas. We

sion constant

o,- [ “oym)at @
The transverse velocity is
_ h
y=v t:)

and(h?)=Na’/3. We thus obtaiD,~D,~ €>?.

B. Quantitative treatment

These scaling arguments suggest that the longitudinal a

the transverse diffusion constants are of the same ordea.
Therefore we expect their ratio to be a universal constan

which we calculate below.

We rely on the results obtained in Rgk]. The distribu-
tion density functionp(h,,t) for the end-to-end projection
obeys the following master equation:

ap 1%

ot~ any | ahy ©)

(D*p)—v*(hx)p],
whereD* =v/3, and
v* (h)=v(—h,/N+ (consth,) e?*h2*NY3) = — g (5h,),

whereg, = 3v/N, sh,=h,—h{?, andh {?=(h,) is approxi-
mately defined by the condition* (h{?)=0. The first term

discuss only usual open ring polymers and do not consider
more complex topological states such as supercoiled rings.

A. Equilibrium and reptation dynamics in the absence
of electric field

A ring polymer immersed in a network, but not perma-
nently entangled with the network, adopts a branched tree-
like conformation at equilibriunf12]. That is why it is a
natural first step to consider the dynamics of a ring polymer
before analyzing the branched structures formed by linear
polymers. The excluded-volume interactions do not play any
significant role for the DNA conformatiofunless the mo-
lecular weight is extremely largesince this molecule is very
rﬁgid: the ratio of the Kuhn segmehbtto the chain thickness
is ~50. We therefore use the results obtained for ideal
tt’ings [12]. These are summarized below.

The typical conformation of a ring in a netwo(gel) is a
branched structure similar to that arising in the classical ge-
lation theory[13]. (We assume that the gel is homogeneous
throughout the paper. The effect of gel inhomogeneities
might be important for very weak fields; however in the
regime of moderate and strong fieldsy 1/N, the inhomo-
geneities just lead to a slight renormalization of the pore
size) The only difference is that the ring polymer passes
twice (in the forward and backward directionsy each bond
of the corresponding classical “treg(Fig. 1).

A treelike conformation is characterized by its spatial size
r(N)~N¥*and its backbone leng(N) that can be defined
as the longest primitive path connecting distant polymer seg-
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FIG. 1. Classical treelike structure of a ring polymer in a net-

work. @ (®)

ments.[Thus Necr (N)%: a classical tree is a fractal with di- _ F'C- 2- (@ Thering is adiabatically squeezing through the gates
G: the number of segmentsin the shown part of the ring is slowly

mensionD =4 ] For a classical tregs(N)~N*2in contrast to - sressing. The primitive bath is shown b 'R f
s(N)~N for a linear chain. There is another important dif- ' ing. The primitive path is shown by gré) Rearrangemen
of the primitive path on the scal®>g: the activation statéonly

ference .between .Im.e.ar and treelike ConformatlonS: for a IIn'the primitive path is shown The vacated part of the primitive path
ear chain the primitive path-length fluctuations are WeakiS shown by dots; the new part is bold
5s/s~1/N*2, whereas for a ring these fluctuations are large, ’ '

ds/s~1. The spatial statistics of a primilt/i;/e patbf a given  5nger than the relaxation timg(N). In this regime we thus
length) 't?e'f IS Gaussm_n and(N)~s(N) ' anticipate no qualitative difference between the chain confor-
The ring structure is dominated by smalllbranches Ofmation in cases1) and (2). On the other hand, during the
length 1(i.e., a): the number of these branltfzrlgs is of orler  ime ~(N) the ring should already come to a virtual equilib-
The number of branches of lengs(N)~N™“is order of 1.\, \yith the field. The chain extension in the field direction
The reptation dynamics of a ring in a netwolikith no Ay can pe calculated using equilibrium arguments, assuming
external field is a theoretical issue discussed in a number ofa balance between the elastic energy of the ring elongation
publications[14—16. The basic dynamic quantity is the Fe,~[Ax/r(N)]2 and the potential energy fAx. This leads

longest relaxation time of the chain conformatiaiN). All to Ax~r2(N)f, so that

theories predict a scaling behavior(N)~N? however, '

various exponents have been obtaired3 [14,15 and AX(N)~ eN*>, (13
z=2.5[16]. It is probably possible to show rigorously that

z=2.5, and also one could hardly expect taat3. Hence We now consider the regime of stronger fields,

most probably 2.5z=<3. To be definite, in all the estimates 1>e>¢€* = N~ 125 Let us represent the chain as a selNof
below we use the exponemt=2.5, which seems to be in blobs, whereg is defined by the conditiomg?°=1. If the
closer agreement with computer simulatiqa$]. The self- head blok(i.e., the most advanced in the field direction blob
diffusion constant of a ring can be obtained using the aswere free it would move with the velocity

sumption that during one relaxation time the ring moves over )

its own size[16]: Do~ r2(N)/r(N)~N°5 2=N"2. Xiree= p1(g) €~ /g~ €”® (14)

and would create an orientédlong the fieldl primitive path.

The orientation parameter of its primitive path[see Eq.
In the presence of an electric field the total electric force(13)]

is f=€eN (here we assume thigT is the energy unijt In the

limit of an extremely weak fielde—0, the center-of-mass B Ax(9) s

velocity of the polymer driven by the force is=D.f, and =T gg)  9TE T (19

the mobility scales as

B. Gel electrophoresis of ring polymers

1 where the indexb refers to the branched conformation. The
u~NTE (12 blobs behind the head blob cannot force it to move faster
since the tension along the primitive path of the chain is
Equation(12) is valid if the ring conformation is nearly un- always positive so that the tension force must be oriented
perturbed by the field. In order to estimate the effect of thebackward(if other blobs are moving faster than the head
field on the conformation we compare two situatiofig:free  blob, they will leak to the sides creating new branghes
motion of a ring polymer(2) conformation of a ring with a Let us now consider the possibility that the head blob is
fixedsegment—both in the presence of the field. It is naturamoving slower than in a free state because the other blobs
to assume that the conformation of a free chain is less afpull it backward. An extreme situation of that kind is sche-
fected by the field. Therefore the second situation providesnatically shown in Fig. 2.
an upper boundary for the chain deformation. The extension The head part of the ring of sizg~ e “Sis only moder-
of the ring with a fixed segment in the field direction is ately affected by the field, and thus can easily come to equi-
negligible if the typical potential energy ~r(N)f~eN2>  librium with the field. Therefore it is stretched in the field
is smaller than one. Hence EL2) is valid in the region direction by a factor of order 2. A rearrangement of the
e<e*=N"1% primitive path on larger scales is much more difficult. The
Using Eq. (12) it is easy to see that in the regime only possibility to change the primitive path on a sca® g
e<e* =N"1?the time during which the chain drifts in the is to create a hairpin near segment (counting from the
field direction on a distance of order of its sizéN) is much  head; the hairpin then grows and forms a new primitive path
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(“eating” the old one. The activation state corresponds to .
the situation shown in Fig.(B) where the lengths of the old : 5

and new primitive paths are comparable. The corresponding &

barrier isU ¢(m) ~em[x(m) —x(m/2)], wherex(m) is the L
averaged projection of the end part withsegments. Obvi-

ouslyU ,(m)>U,.{(g)~1 sincem>g. Therefore the relax-

ation on scalesn>g is exponentially slow, and thus is neg-

ligible unless the “velocity” dn/dt is exponentially small,

which is not the case. Hence a linear primitive path with a

nearly homogeneous 0rientatior7yb~r(g)/s(g)~¢sl’5 is . ) .
formed. The one-dimensional tensienalong the primitive FIG. 3. Typical conformations of a ring hooked over an obstacle
path is not homogeneous however: it is increasing with th@" the largest scaléhe masses of parts 1 and 2 are compajable
distance from the head as(m)~ex(m). This tension _ L ) .
strongly stretches the middle blobs along the primitive path. 1h€ ring moves over its size during the primitive path
Obviously the stretched middle blobs would move fastef€néwal time. This gives an estimate of the ring size inxthe
than the unstretched head blob. In order to be more quantflirection:
tative, let us consider a completely stretched blob that is thus
equivalent to a part of a linear chain. Its velocity in tke
direction is X~ wj,e~nie~€’, where w;, is the linear
chain mobility defined by Eq(3) with the order parameter
7, determined by the leading blob. The velocity is much
larger than that of the free head blob, EG4). Thus the

(a) (b)

hy~X7(N,e)~Ne35. (18

On the other handh,~ #s; thus the primitive path length is
s~Ne?5. Assuming Gaussian statistics of the primitive path
in the transverse direction we get the transverse size

blobs behind the head blob cannot slow it down as they are hy~Sl/2~N1/2€1/5. (19
moving faster themselves, in contradiction with the original
assumption. Note thath,~h,~N" for e~e*=N"%% andh,>h, for

We thus come to the conclusion that the head blob istronger fields.
moving neither faster nor much slower than in a free state. Let us proceed to the calculation of diffusion constants for
The average velocity of the ring center of massust co-  a ring polymer in the regime>€*. The crucial notion is that
incide with the velocity of the head blob. Therefore the mo-both h, andh, always strongly fluctuate. The large fluctua-

bility of a ring chain is tions ofh, are due to the Gaussian statistics of the primitive
path in they direction. The longitudinal fluctuationsh, are
w=pp~Xl e~ €5 (16 large because the ring often hooks over an obstacle thus cre-
ating two competing subtrees of comparable sizes. An ex-
if e>N"54 ample is given in Fig. 3: botth, and the center-of-mass

Another important quantity is the time(e,N) during  velocity are smaller in conformatidi) than in conformation
which the primitive paticonnecting the head and the tail of (b). The typical time in a hooked state is agaif,N). The
the ring is renewed. This time is estimated here from gen-size fluctuation is thugh,~h, .
eral arguments that use only the fact that the primitive path is The fluctuations of the velocitypx on the time scale
oriented with an order parameter-€/°, Eq. (15). We thus  7(e,N) are thus of order of the mean velocity:
avoid a detailed description of the complex chain conforma-dx~ sh,/r(e,N)~ €”°. A similar estimate for the transverse
tion. The primitive path can be represented as a sequence wélocity gives: sy=y~h,/(e,N)~N""%">. Using Egs.

s gates confining the ring. Lat(t) be the number of seg- (5) and(7) we obtain scaling estimates for the diffusion con-
ments that passes through a given gate. On the avel@ye stants:

is the same for all gates. The dissipation rate is . .

D=¢(dn/dt)?, where( is the effective friction constant that ~ Dx~(8%)?7(&,N)~Ne'?®, Dy~ (8y)?r(e,N)~ €.

is proportional to the total length of the primitive path-s. (20)
The last statement can be verified by calculating the re-

laxation time of a free ringin the absence of fielde=0) IV. DYNAMICS OF A LINEAR CHAIN

assuming that/~s. A complete relaxation is possible if IN THE BRANCHED STATE

n(t) ~N. The effective diffusion constaiffor the coordinate o ] ) )

n) is D~ 1/t~ 1/NY2 This leads to the correct relaxation  YWhen a hairpin forms on a linear chain undergoing gel

time: 7(N)~N2%/{~N25, electrophoresis, the head of the hairpin behaves similarly to
The motion of the ring under electric field is driven by the the head of a ring polymer as the chain in the hairpin adopts

electric force; the dissipated energy is therefore equal to thé branched conformation. We now study the influence of this

work of this force W~ en(t) s (here s is the projection of branched structure on the linear chain dynamics.

the primitive path onto the field directipnThis condition

can be written ag D(t)dt~¢n?/t~W. The primitive path A. Weak electric fields, e<1
renewal time is obtained with~N: A possible way to form a branched structure is shown in
Fig. 4: the middle part of chainn( that leaked out of the
N N original tube adopts a treelike conformation identical to that
T(E,N)’V—’V—SE—). (17)

€n € of a ring polymer comprising+1 segments. This illustrates
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n M — M

FIG. 4. The middle chain part leaks out of the tube. \

N-2M
the general nonlinear conformation of a linear chain that in-
cludes a treelike core with two tails. Since the mobility of a  FIG. 5. A typical conformation of a linear chain in the branched
treelike part is higher than that of linear paft®mpare Egs. state: branched middle paii(-2M) with two parallel tails (1) of
(16) and (3)], the branched core must be ahead of the tail$early equal length. The very end parts of each tail are random
that follow the primitive path created by the core. The ori-Gaussian coils; the length of these parts is determined by tube-
entation parameter of this primitive path is thgs 5,~e>.  length fluctuations.
The length of the tails is determined by the fact that they
must move with the same velocity as the branched part B. Large electric field, e>1

- J : . : .
X=pupe, where u,~€*®. Let us consider the balance of  For e~1 the results obtained for weak fields can still be
forces acting on a tail consisting 4 segments by project- ysed within scaling accuracy; they lead to the following es-

ing all the forces onto the primitive path. The relevant forcesimates for the mobility, the relaxation time, the diffusion
are the electric forcé,,, the friction forcef, and the ten-  constants, and the chain sizes

sion forces at the heddear the branched paw(M), and at
the very ends(0): p~1, 7(IN)~N, h~N, h~N"

fe=fy+0(0)—o(M). (21)

The end tension forcer(0)=0,~1 (that iskT/a), was first ~ The chain is almost completely extended in thelirection
considered by Doi and Edwardsee Chap. 6, p. 208 of Ref. for e~1, although its conformation is highly branchétihe
[9]). The nature of this force is purely entropic: it is favor- fractal branched chain structure was originally proposed in
able for a chain tail to go out of any given tube. It is the forcethe regime of strong fields in Ref7].) A chain cannot be
of Doi and Edwards that prevents a chain from a collapsé&xtended more than its contour length, and its mobility can-
inside the tube during reptation. Some interesting dynamifot become larger than the mobility of one free segment
implications of this force have been considered in R&¥].  #1~1. Therefore fore>1 we expect thaju~1, hy~N in
In our case the force of Doi and Edwards suppresses formagreement with the results of R¢T]. The relaxation time is
tion of hairpins in the tail parts: the tails are almost com-7(€,N)~N/x=N/ue~N/e. The fluctuations of the center-
pletely extended along the primitive pa{(M)~M. Obvi-  0f-mass velocitysx are of the order of the average velocity
ously the tension must vanish near the branched pdi) x~ € for the very same reasons as discussed for weaker fields
=0. in Sec. Il B. Therefore, the longitudinal diffusion constant
The friction force is f,~vM, where v~x/7, can be estimated a3, ~ (8%)27(e,N)~eN. The transverse
— upel 7y~ €% is the curvilinear velocity. The electric force diffusion constant iD,~h?Z/(e,N).
is fo~en,M~ €¥*M. The friction force is thus negligible in In order to estimate the transverse digeve consider the
comparison with the electric force sineecl. Then Eq(21)  head part(of length n) that is falling down the field with
can be rewritten ag,=c(0), so that the equilibrium tail Vvelocity v~e. The electric force acting on this part is
length isM ~ e 5. The conditionM = N/2 defines a critical fe=e€n, the friction force isf=—vn (since the friction con-
field €¥* ~N~%6, The branched conformation is unstable for stant isn in the reduced unils We assume thafv) =Ce,
e<€™ but is stable for higher fields. In the reginee:e*™* whereC<1 is a numerical factor accounting for the slowing
the tails grow until the head branched core disappears, arédPwn effect of the hooked conformatiofeee Fig. 3. There-
finally the chain goes back to a linear conformation. Thefore the total forcef = f+f;~en is directed along the field
whole process is driven by the force of Doi and Edwards. Orfthis force is balanced by the chain tengioA deviation of
the other hand, i€ then the tails are shorM <N, so  the very head point of the falling hairpin on distancén a
that nearly the whole of the chain is brancHede Fig. 5. transverse direction would result in a restoring force
The mobility and the diffusion constants in these regimes'y= —(y/n)f=—ey. Although the falling part is almost
are the same as for a ring polyniéris easy to show that the completely straight, the gel does create a transverse force
effect of short tails on these parameters is negligileey ~ acting on this part as the gel pore structure is random. A
are given by Eqgs(16) and(20). Thex projection of the tail force created on the scale of one pore is of the order of 1 and
part isM 7,~1/e, i.e., it is larger than the corresponding size is randomly oriented. The total typical force acting on the
of the branched paie®® in the regione** <e<N~°8 The  part is thusf e~ Jn. Assuming virtual equilibrium between
tails are completely negligible i>N"58, fye andf, we gety~ n/e. Therefore the chain size in the
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Thus the hairpin tends to disappeani&n*, but it grows if
n>n*, wheren* ~1/e is the critical nucleus size.

Therefore the reptation motion is only metastable for any
fixed € as the critical hairpins should appear with a finite rate
I" that depends oml. Once created the critical hairpins grow
and develop into a treelike branched structure considered in
the Sec. IV; this treelike structure is stablesif €™ . Finally
after a long enough time~ 1/I" nearly all the chains take a
treelike conformation(See Sec. VIl for more discussion of
this point)

The formation of a critical hairpin is an activation pro-
cess. The corresponding activation bartieis equal to the

FIG. 6. A hairpin nucleus in the middle of a reptating chain. Thework that an external forcé,,; applied to the tip-poinH
hairpin is oriented in the field direction. The chain tension vanisheshould do against the force of Doi and Edwards. In the pres-
at pointH. The partsAH andHB are virtually independent. ence of the external force the right-hand sigdes of Eq.

(23) takes the form(en+ f.—20y)/{, so that the adiabatic

transverse direction is,~(N/n)*?\n/e~\N/e. The re- condition @n/dt=0) leads tof =207~ €n, and
sults fore>1 can be thus summarized as

u~1, 7(eN)~Nle, D,~eN, Dy~1e U:UOZJfex‘(n)dnwdn*)zwagle' 29
1] 1] ) X 1] y [}

Using the same kind of arguments it is possible to show that
U does not nearly depend on the position of the nucleus
along the chain(although hairpin formation is slightly pro-
V. NUCLEATION OF HAIRPINS moted near the chain headlherefore the rate of critical

. ) . , hairpin formation is
As the hairpins play a dominant role in the chain structure

he~N, hy~N"7e. (22)

at high electric fields, it is important to discuss how they I'gcexp —U)xexp —Cle), (25)
appear. This is due to a nucleation process that is described
in this section. whereC is a numerical constant.
In Sec. V B we consider another mechanism of hairpin
A. Mechanical picture formation that leads to a much higher rdte

We study the reptation of a linear chain along a linear
tube in the weak-field regime, NK e<1. The tube is ori-
ented along the field with an order parameigre'? (see The reptation motion of a linear chain is driven by the
Sec. Il A). We want to discuss the stability of the reptation effectiveelectric forcef = ez per unit length of the tubéhe
motion with respect to formation of hairpins. This is done by primitive path. So far we have assumed that the tube orien-
considering a small hairpin of sizelocated in the middle of tation ishomogeneoysso thaty= %(s) is constant. In real-
the chain(Fig. 6). ity, however, the tube conformation is random and is ori-

The chain tensiomr vanishes at the very head poitlY  ented only on the average. Therefore the order parameter
of the hairpin. Therefore the parfsH andHB are moving fluctuates along the tubej(s) = 5o+ d7(s), where 7;0~el’2
nearly independently. The total electric forgzojected onto is the mean value. The effective foréés)=ez(s) is thus
the tube axis acting on the part AH is also fluctuating giving rise to fluctuations of the tensien
f1=en(N—n)/2+ en/2, where the first term corresponds to along the tube: in some parts the tension is higher than the
the partAA’ [consisting of N—n)/2 links], and the second average value,~1, in some parts it is lower. The barrier for
term is due to the half of the hairpiPA(H), which is as-  hairpin formation is proportional to the square of tloeal
sumed to be completely stretched along the fi€lthis sim-  tension: in the general casg in Eq. (24) should be replaced
plifying assumption is actually irrelevant for the final result. by the local tensiorr and the hairpin formation is dramati-

It can be easily checked that it is the stretched configuratiocally accelerated in the regions of lower tension. Actually,
that leads to the lowest-energy barriérhe effective electric the optimal way to create a hairpin is to wait for a large
force acting on the second partHB) is f, enough tube orientation fluctuation leading to zero tension in
=en(N—n)/2—en/2. The curvilinear velocity of the part some part of the tube—the hairpins would then immediately
AH isv,=[f;—o(A)+a(H)]/{, where{=N/2 is the cur- appear in this part: below we show that the rate of creation of
vilinear friction constant; the velocity of the second part issuch fluctuations is much higher than the r&tegiven by
vo,=[f,+c(B)—o(H)]/{. The hairpin growth ratén/dtis  Eq. (25).

B. The effect of tube orientation fluctuations

equal to v;—v,. Taking into account that Let us estimate the typical tension fluctuatigiasinduced
o(A)=0(B)=0y~1 (the force of Doi and Edwardisand by the fluctuations of tube orientation on a scalalong the
a(H)=0 we get tube. The total effective force acting on the chain fragment

inside the tube section of length (say between the points
s=0 ands=n, wheres is the coordinate along the tubis
F = eh(n), whereh(n) = [ §(s)ds=hy+ éh is thex projec-

dn en—20g

FTY: (23



55 FORMATION OF HAIRPINS AND BAND BROADENING . .. 795

tion of the tube section of lengthandhy= 7nyn. The Gauss- A
ian statistics of the tube fragments implies that 3 -
((8h)?)=3n. (26)

The typical fluctuation of the force i6F = esh~ e\/n. The
curvilinear velocity of the chain section s=F/{=F/n, (@
where/=n is the friction constant. The average velocity is
vo=€ny~€'%. The typical velocity fluctuation isdv
~ 8F/n~ el \/n. Note that the forcéF is acting on the chain
section during the time it passes the given tube par&®
<n: t~n/vy=n/eny. The fluctuation of the position along
the tube of the chain section of monomers, which is in-
duced byéSF, can be thus estimated a@s~t&v~+/n/ 7.
Since conformations of different tube parts are statistically
independent, the effective electric forc@s acting on neigh-
boring chain sectiongf lengthn) are not correlated. There-
fore s can also be interpreted as a typical change of the
curvilinear distance between the neighboring sections of size
n. The corresponding fluctuation of tension is FIG. 7. (a) The chain is hooked over an obstade (b) After
Sa~8sIn~n~Y? 7o- Note thatdo is increasing as the scale some time both parts will extend and become essentially lirfepr.
n is decreased. Then one(large) part wins and a linear conformation is finally
The above estimate is valid & is smaller than the origi- created.
nal force fluctuatiordF, that is ifn>ny~ 1/eny. On shorter
scales,n<n,, the electric force fluctuation is directly bal- ~ This scaling analysis is supported by the quantitative
anced by the fluctuation of the tension forcéo~ SF treatment of the linear tension fluctuations presented in the
~en. Thereforeso is dominated by fluctuations on the Appendix, where it is shown thdD ,= ¢ oo( €l 7o) € and
scale ny: the typical tension fluctuation isdoc U=21sg?%e 2
~ 8o (ng)~ €Y, or D s=(b60?)~ €' We thus conclude that the rate of nucleation of a hairpin
If the tension vanishes at some poiwhich implies a from a linear state is
large fluctuationdo=o0y), then a hairpin starts to grow at this Y2 1
point. It grows up to a size of ordem, during the time Foeexp(—2.1og7€™). (28)
to~ng/vg, Which is simultaneously the Rouse relaxation
time of ann, fragment ¢,~n32). The hairpin then continues
to grow (the growth being driven by the electric fig¢ldince
no~1/e¥? is much larger than the critical nucleus size
n* ~1/e. [Note that the effect of thermal noise is negligible:
the typical thermal fluctuation of the curvilinear length of an
n fragment inds~n'2, so thatéoiem~ ds/n~n"~ Y2 for the
scalen~n* we thus geBoy,e~ €<, which is much smaller
than the typical fluctuationel induced by tube orientation VI. DISCUSSION
fluctuations. Thermal fluctuations on smaller scales are irrel- |, ihe previous sections we considered the mechanisms of
evant as they cannot possibly lead to the formation of a critisormation of a branched chain structure from a linear con-
cal hairpin of sizen*.] . figuration, and the effect of this transition on the electro-
We thus need to estimate the probabilig(0), that o phoretic mobility. The theoretical treatment was based on an
vanishes at some point. The tension fluctuation is PropOimplicit assumption that the branched structure, once ap-
tional to the size fluctuatioo 5F 5h(ng). On the other  peared, remains stable. Let us discuss this assumption in
har21d, the distribution oﬁh(ng) is Gaussian in the region ore detail focusing on the weak field regirdd <e<1.
oh“/Dy<ng, where Dp=(5h%). Therefore So=0—0o IS  Tq clarify the point let us try to imagine a process of
also characterized by a Gaussian distribution in the regiogansformation of a treelike structure into a linear one. One
5,‘72/[,)o<”0’ ie., do<l/e” The prgbability density func-  gimple possibility is shown in Fig. 7: the chain in the
tion is P(g)=consiexp[—(o—00)7/(2D,)]. Hence the anched conformation is hooked over an obstacle, so that
probability that the tension vanishes at some point igyg chain parts are competing. If the parts are almost equal,
P(0)xexp(-U), where they both will move forward thus increasing the tension near

N (b)

(c)

The parametew, depends on the gel structure. However,
ideally it does not depend on the gel-pore sizé the gel
has large poresg>b. A naive tube model representing the
tube as a sequence of Gaussian blobs of sizenplies
that 0,=3 (since the elastic energy of theth blob is
3kgT[s(n)—s(n—1)]%/(2a?).

5 point A, and finally the chain conformation becomes linear.
U= %0 12 @27 Two points are important here. First, the time during
2D, ' which the whole mass will flow to the winningargep part

_ is 7(e,N), whereas the time needed for a chain to extend
Note that the apparent barrigris much lower tharJ,, Eq.  itself to a linear conformation is much longer since this pro-
(24). Therefore the hairpin formation process is dominatedcess implies that the treelike chain will move on many its
by the fluctuations of the tube orientation. own sizes. The second point: even if the chain happens to
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transform to a linear state, there is no reason for the tubef the same orders(N)~ ds(n)~N¥2 so that the field ef-
orientation parametes right after the transformation to be fectively orients the whole chain.

the same as for equilibrium linear statg. In fact, one One must also keep in mind that our understanding of the
should anticipate that the tube orientation at first will be ofreptation motion of ring polymers remains rather rough. All
the order ofp,> 7,. When the chain starts to reptate in this the scaling laws derived here are based on the assumptions
more orientedand also inhomogeneously orientadbe, it ~ that are compatible with the scaling model proposed by
moves faster than an equilibrium linear chain and thus crePbukhov, Rubinstein, and Dukd6]. The model may turn
ates new tube parts with even weaker orientation thathe ~ OUt not o be exact. This would affect the numerical values of
tube order parameter at the tip is inversely proportional td"€ €xponents predicted in the present paper. However, we
the curvilinear velocity[5]). Therefore the head part of the believe that the main qualitative results would remain valid,

tube is much less oriented than the tail part, so that the ei’-—n particular that th? orientation parameter is higher for a
fective electric force per segment of the head part is Sma"elpranched conformation. - .
We also assumed that the statistics of DNA molecules is

than for the tail part. But both parts have to move with the, deal | did ke i li f
same curvilinear velocity. Therefore, the tail part will pushI eal, l.e., we did not take into account any swelling of DNA

the head part, the pushing force being proportional to th&on‘?’ by excluded \_IOIL_'me interactions. For a _coiled confor-
total friction, that is proportional to molecular weight. Obvi- metmdn (;erohelect_rlc fieithe degree oflezwelllggg IS k(]jeter-
ously the pushing force could easily decrease the linear ten: mebzd y the lemlan FlJa(;ag]et?~Nb B,/b*, V\;] ere
sion in the middle of the chain to formally negative values,32~P~d IS the typical excluded volume for two Kuhn seg-

which means that hairpins leak out of the tube, and that thgwents,d is :che thi;]:kness of the DNA chain, a M, is the
treelike structure develops again. We thus conclude that apumber 192 Kuhn ~segments per chain. Therefore
~0.02N'“. The swelling might be important #&=1, that

irreversible transformation of the treelike structure to a linear® :

one must be extremely unlikely. The transformation impliesIS for Np=2500; this length c_orrespo_nds t010° bp _(base

that not only the chain conformation should become Iinear,pa'rs)' The excluded vc_)lume Interactions are Iess.|mp.ortant
the regime of high fields, where the conformation is ex-

but also that the tube must be homogeneously oriented witf! ded he other hand. bi babl
the order parametey, , which is much lower than that of the tended. On the other hand, binary contacts are more probable

branched structure. Therefore, each blob of sizee %5 in in the more compact branched state. Since the chain is ex-
ed on the average on scales larger than the blob size

the branched structure must be appreciably less oriented thd@nde /5 - . :
g~ we only need to estimate the effective Fixman pa-

on the average. For each blob the probabifityto have a ¢ b hed - ; )
low orientation remains finitéit is not exponentially small @mezter or 63‘ kr}anc e bl°b14 (assuming thata~b):
The number of primitive path segments per blob,is g2 2~ 9°B2/r(9)", wherer(g)~bg™. Thus z~(d/b)1/e, so
(see Sec. Il A If we ignore the correlations between the that the effect of the excluded volume interactions is negli-

orientations of the different tube parts, the probability that9iPle Z<1) if e>d/b~0.02. .
the whole tube has a lower orientation fg(p;)"'t Note also that we assumed that the network structure is

~exp(—consixNe2). (In other words, we assume here that ideal. In particular we neglected any effect of dangling ends
a lower orientation of a blob does not increase the probabilgta'ls) in the gel, which might slow down the dynamics of a

- : . . ircular polymer in a weak field regin{@2].
ity that a new blob appearing at the tip is also less oriente'"Y . . e
than on the average. Actually we expect an opposite ten- Finally we discuss the: dependencies of the diffusion

dency: at least we know that it is opposite for linear chainsfonﬁ(amSD><]c and ?Y’ _assunlm?l E;]%t the tra_nsm(:nl to the
[5].) This probability is always much smaller than the prob-.reel e conformation Is controlled by experimental time

ability of the reverse transformatioflinear to branched €., by the produﬁcrl:t. The. fraction of chains in the ,“?Far

i ; _ -1 : state is roughlye™ "', and in the branched state;-&2 " .
which is p,xexp(—constke ), see Egq. (28), since Thet diffusi tant is simolv the weiahted
Ne?5>e 12 in the region e>e** ~N~5% where the e transverse diffusion constant is simply the weighted av-

; / 8/5 .
branched structure itself is stable. Thus transitions from th&"29¢€ between the Ime&r”z) and the branche(™) values:

branched to the linear state can be neglected in this region. D ~Tt _3/2 _a-Tty 85
. . . y~e et (l-e e
The main results of this paper are partially based on the

analysis of the effect of the electric field on the orientation-rhusDy is increasing withe in the region IN< e<1 except
parameter of a circular polymer chain given in Sec. lll B. Wej, the vicinity of the transition pointI{t~1) where it de-
showed that the effect becomes noticeable if the typical pogreases by a factar’?e®= Y0 The cross-over field,,

tential energy of aring in the fieldNr(N) wherer(N) is the  getermined by conditiofrt~1, is small if the experimental

ring size, becomes larger than kgll). This leads to the {ime is large compared with the segmental timge
critical field e* ~N~°4 Note that this criterion is not valid

for linear chains: it would imply tha¢* ~N~? as for linear €~ 1/(In t)2 (29)
chainsr (N)~NY2, instead of the correct result predicted by

the BRF modele* ~1/N [4,5]. The difference is connected [see Eq(28)]. In the region of strong field&>1) the trans-
with the fact that in the linear case the electric field orientsverse diffusion constant decreases as the field is further in-
effectively not the whole chain but only its end part thatcreasedD,~ 1/e.

fluctuates forwards and backwards along the tube trying its The behavior of the longitudinal diffusion constant is
different conformations. The length of this part is of the or-more complicated. Here we should take into account the fact
der N*2 i.e., it is much shorter than the whole tube. In thethat in the regionl't~1, where the two state@inear and
case of a ring polymer the situation is different: here both thereelike compete, the electrophoretic band is additionally
average primitive path length and its typical fluctuation arebroadened because each chain part of the time is moving
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with the velocityv,= €, and part of the time—with the thanN** are moving faster than slightly shorter chains.
velocity v,= upe. As a result the chain displacements are In the regime of very weak fields the relaxation timé 1/
distributed (more or less homogeneously between becomes exponentially large, and can easily exceed the time
Ax; = u et and Ax,= upet. The apparent diffusion constant t of the experiment or computer simulation. Then a nonsta-
in this region is thus tionary mobility would be observegu= u,+T'tu,, where
I't<1 is the fraction of chains that transform to the branched
Dy~ (Axp— Ax)/t~ e (up—p)’t~€®X. (300 state during. Then the region where the mobility increases
with the field is determined by the tinte rather than by the
On the other hand, in the regioh¥<1 andI't>1 the dif-  molecular weight.
fusion constant is always increasing with the field: In these an experimental test of the possibility of the linear chain
regionsDy is determined by the dynamicsg/i;’n the linear andg the branched chain transition would be very desirable.
branched states, respectively, herg~e™ for I't<1, \ypjle 4 direct observation of the DNA conformation might
D,~Ne™"for I't>1 [see Eqs(6) and(20)]. This qualita- 5t pe easy, we suggest the following tentative experiment
tive behavior persists in the regime of strong fields;1,  janded to verify the main prediction in the weak field re-
wh\%er~ eN [srzee qu.(22)]. . | titrie | han th gime €** <e<1: Let us apply an oscillating field to a sys-
e assume that the experimental time longer than the tem of DNA molecules in a gel. The period of oscillations

drift time 7=N/v~N/€e*? of the linear state. Therefor®, i . :
shows a maximum in the regioRt~1 since Eq.(30) im- should be longer than the tube renewal time of a linear chain,
plies that D, >Ne?L ie itg is larger thanq.the value ™ N/e%2. Then the amplitude of the induced DNA oscilla-

X b tions should saturate during a few periods. However if a

D,~Ne>*inherent for the branched conformationeste,. .- > ;
This prediction is in agreement with some experimeag] field-induced transformation to the branched state does hap-

and computer simulatior49)]. pen, then the amplitu.de should appre_ciab_ly che(lhgﬁeqsé
Note that in the regime> e, the longitudinal diffusion ©n @ much longer time scale I1/which is exponentially
constant is always larger than the transverse diffusion cordependent os. Thus measurements of the time and the field
stant by a factor proportional tN. The ratioD,/D,, is in- dependence of the amplitude would reveal a conformational
creasing withe in the regione> ¢, . This result is in a quali- change.
tative agreement with observations foiDNA [11]. We hope that future experiments and computer simula-
tions can provide a more quantitative basis to the main pre-
diction of this paper that the nonlinear treelike conformations
are important even for weak fields.
The main result of this paper is that the normal reptation
motion of a charged polymer chain driven by an electric field

VIl. CONCLUSIONS

is not absolutely stable even if the field is weak;1: hair- ACKNOWLEDGMENTS
pins nucleate and develop into a treelike branched structure
with the ratel” defined in Eq.(28). We thank B. TinlandICS, Strasbourgfor an interesting

The branched structure is a fractal as suggested in Refliscussion on his experimental results. This work was per-
[7]. In the region of weak fieldée<1) the structure is char- formed during the stay of one of the authd&.N.S) at
acterized by an additional scale—the blob sizeStrasbourg University(Institut Charles Sadron A.N.S.
g=d(e)~e *® Inside these blobgn a scaleAn<g) the  would like to thank the University and the Ministry of
conformation is nearly isotropic and is characterized by aHigher Education of France for the opportunity to stay in
unique fractal dimensiorD=4 in both longitudinal and Strasbourg.
transverse directions:Ar,(An)~Ar,(An)=(An)*.  For
larger scalesAn>g the structure is strongly anisotropic:

AryAn, Aryc(An)Y2 so that the fractal dimensions are  APPENDIX A: THE CHAIN TENSION FLUCTUATIONS
different: Dy,=1, D= 3. The internal fractal characteristics

of the structure are also different on shakin<g) and long We calculate here the mean-square fluctuafignof the
(An>g) scales. In particular, the longest primitive path chain tension in a linear chain conformation. The biased rep-

tation dynamics(including Rouse fluctuation modes inside
the tube is governed by the following master equation that
was analyzed in Ref$20,21,3:

length of a branch\s, scales asAsoc(An)D', whereD' =
1 inside theg blobs, andD’ =1 for larger scales.

The treelike structure is stable &> e** ~N~%6. Thus
after a relaxation time I/nearly all chains would transform
to a treelike state. The mobility in the branched state
wy,~ €*%is higher than the mobility in the linear staje,~ e. ss(ny)  do
Therefore inequilibrium conditions we expect that the mo- oot an
bility as a function ofe should increase in a vicinity of**
by a factore¥>~NY8, which is at least formally largéac-
tually however it is hardly larger than three as normallywheres(n,t) is the curvilinear coordinate of theth segment
N=<10%). This increase should also show in the dependencéhe segments are counted from the chain head to the tail
of mobility vs N for N** ~ ¢~ 85, This result thus provides o= —oyds/dn is the linear chain tensior;=1 is the fric-
an alternative explanation of the band inversion phenomenotion constant per segmeriin units kgT7,/a?), and f(s)
observed in many experiments: molecules that are longer e7(s) is the effective electric force per segmefWe ne-

+1(s), (AL)
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glect a dependence d@f on one-dimensional densiign/Js
since the typical fluctuations of the density are smalhe
boundary conditions are

d(0)=c(N)=o0y. (A2)

The randomthermalforce acting on the segments is ne-
glected as explained in Sec. V B. Equati@l) is still sto-
chastic since the forcé(s) is random:f(s)="fy+ 6f(s),
wheref,= e, is the mean force, andif (s) = ed7(s). Since

orientations of the tube segments are statistically indepen-

dent, the random sourc&z(s) is characterized by the fol-
lowing correlation function:

(on(s)on(s'))=

Note that Eq.(A3) is entirely consistent with Eq26).
The system of equation@\1)—(A3) can be rescaled to a

18(s—s'). (A3)

standard form using the following linear substitutions:

s—S=s/ng, n—v=n/ng, t—r=t/ty, and 6f — &= 5f/1,:

95(».7) ﬁ28+1+ s A4
or 772 &(S), (A4)
aS
—=-1 for v=0, w=N/ng, (A5)
v
(§(S)é(S'))=Do(S-9'), (A6)
whereng=o/fg, to=0,/f 3, and
62
(A7)

Dg: 3f00’0 )

If we formally put é&=0, then the solution of EqgA4) and
(Ab) is trivial: Sy(v,7)=7—v. Let us consider the random
force ¢ as a perturbation that slightly affects the chain motion
(this is true since according to the analysis given in Sec. V
the typical tension fluctuatiodo induced by the random
force, is smal. S(v,7)=7—v+w(v,7). Up to first order in
the perturbation approach, we can substitutEs) by
&(Sy)=&(7—v). The quantity of interest isD,(v)
=(80%)= 0 §(owlJv)?). It is proportional toD:

Dy=05D 1 (v)/2

wherev is the reduced distance from the head, and

A. N. SEMENOV AND J.-F. JOANNY

I(v)

0 | ] ] |
6

v=mn/ng

FIG. 8. The dependence of the reduced mean square of the
linear tension as a function of the reduced distance from the chain

headv=n/ng.
w2
oo {5

is a universal function iN/ny>1. The system of Eq$A4)—
(A6) with &(7—w) instead ofé(S) can be solved using the
standard Rouse-mode analysis. The result is

(0= 1+_f xsm(vx)

X - VX2

C1+x2 dx

(A8)

In particularl —1 for v—oo. The plot ofI(v) is shown in
Fig. 8.
Therefore the lowest barriey for the hairpin formation,

éjeflned by Eq(27), corresponds to large:

Ug 1
2D

3f00’0
D el() €

G:

o

Finally we take into account thd

s) €70, where the mean
order parameter 5] 7,=0.71o V%2

Thus we get

1/2

~ 0
U:Z.leﬂg. (Ag)
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