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Formation of hairpins and band broadening in gel electrophoresis of DNA
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The dynamics of a long DNA molecule undergoing constant-field gel electrophoresis is considered theoreti-
cally on the basis of the reptation theory. A generalized theoretical approach taking into account the possibility
of a branched tube structure is presented. It is shown that in a wide range of electric fields a branched
conformation is more stable than a linear conformation assumed by the standard biased reptation model. The
process of nucleation of a branched structure from a linear structure is considered analytically in detail. The
field dependencies of both longitudinal and transverse diffusion constants are discussed within the framework
of the proposed two-states model. It is predicted that the longitudinal diffusion constant shows a sharp maxi-
mum in the weak-field regime.@S1063-651X~96!09612-2#

PACS number~s!: 87.10.1e, 83.10.Nn
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I. INTRODUCTION

The interpretation of the dynamics of long DNA mo
ecules undergoing constant-field gel electrophoresis is a
cinating problem that attracts considerable attention@1–8#.
The reptation model@9#, which assumes that a chain is mo
ing along a curvilinear tube, has been successfully u
@1,4–6# to predict the molecular weight and the field depe
dence of the DNA mobility. However, a much more compl
dynamics has been recently observed both in computer@8#
and real@10# experiments: if the field is strong enough, th
chain often forms hernias~hairpins!, and also often appear
as hooked around obstacles~the network strands!. A fractal
randomly branched treelike conformation has been propo
to describe a chain with hernias@7#. The fractal structure@7#
imposes a mobility independent of molecular weight. Ho
ever a detailed theoretical description of the polymer dyna
ics in the branched conformation is lacking. More impo
tantly, there is an obvious discontinuity between t
reptation theories for weak fields and the speculations c
cerning hooked and branched conformations@7,8# for stron-
ger fields.

The aim of this paper is to partially fill this gap. The ma
idea of the paper is that branched conformations might
important also for weak fields. We show that hairpins a
irreversibly nucleating from a linear structure with a fiel
dependent rate. The branched conformation that deve
from this nucleation is stable if the reduced fielde is higher
than a critical valuee** ;1/N5/6. In the rangee** ,e,1 we
propose a two-state model where one state is a linear con
mation and the other one a branched conformation. On
the important implications of the model is that the rando
diffusive motion responsible for band broadening is dram
cally enhanced in the region where both states are in com
tition. As a result the diffusion constant shows a peak a
function of the fielde.

In Sec. II we consider the field dependence of the lon
tudinal and transverse diffusion constants for the linear s
~with no hairpins! using the biased reptation model with flu
tuations~BRF! @4–6#. Section III is devoted to the dynamic
of circular DNA molecules, which is very similar to that o
551063-651X/97/55~1!/789~11!/$10.00
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linear DNA molecules in a branched conformation cons
ered in Sec. IV. The problem of hairpin nucleation is a
dressed in Sec. V. The results are then used to predict
field dependence of the diffusion constants.

II. BIASED REPTATION WITH FLUCTUATIONS
AND DIFFUSION

We discuss here the random diffusive motion of a line
chain undergoing constant-field electrophoresis. The long
dinal diffusion constantDx has been already calculate
within the BRF model@6#. With a generalized treatment pre
sented below we obtain bothDx and the transverse diffusio
constantDy .

A. The model and the scaling arguments

Let us consider a long DNA molecule immersed in lar
porous gel: the pore sizea is larger than the Kuhn segmen
b. The molecule can then be considered as a Gaussian c
of N@1 subunits of sizea ~these blobs are called segmen
below!. The reptation concept reduces the effect of the
strands on the chain motion to a virtual curvilinear tube co
fining the chain. The tube diameter isa, and its length is
L5Na. An electric field~applied in thex direction! induces
a drift along the tube axis with curvilinear velocity@1#

v5e
hx
Nt0

, ~1!

wheret0 is the segment relaxation time,hx is the projection
of the tube end-to-end distance onto the field direction, a
e5qEa/(kBT) is the reduced field~hereq is the charge per
segment!. The center-of-mass velocity is then

ẋ5v
hx
L

5
ea

t0

hx
2

~Na!2
. ~2!

Assuming thatt0 is the unit time, anda the unit length, we
get the mobility@1# m[^ẋ&/e5^h x

2&/N2. In a weak field the
chain statistics is nearly Gaussian, so that^h x

2&5Na2/3 and
the mobility ism51/(3N).
789 © 1997 The American Physical Society
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790 55A. N. SEMENOV AND J.-F. JOANNY
The effect of the electric field induces an orientation
the new parts of the tube that are being created at the c
head; the orientation order parameterh[^cosu&5^hx&/N is
predicted by the BRF theory@4,5# in a self-consistent way a
h;e1/2 if 1.e.1/N. Therefore in this electric-field rang
hx.hNa@N1/2a, and the tube is stretched along thex axis
on many Gaussian sizes. Thus the mobility is proportiona
the square of the order parameter:

m.h2;e. ~3!

However the center-of-mass velocity is not exactly const
in this regime since the end-to-end chain projection is s
fluctuating: hx5hN1dhx , where ^dh x

2&;Na2, as for a
Gaussian chain. The corresponding fluctuation of the cen
of-mass velocity is@see Eq.~2!#

d ẋ52eh
dhx
N

. ~4!

The characteristic relaxation time of the velocity fluctuati
is clearly the drift time taken by the chain to reptate over
whole tube length;t;N/v. The longitudinal diffusion con-
stant, defined as

Dx[E
0

`

^d ẋ~0!d ẋ~ t !&dt ~5!

can thus be estimated using Eq.~2! as @6#

Dx;t~d ẋ!2;eh;e3/2. ~6!

A similar estimate is also possible for the transverse dif
sion constant

Dy5E
0

`

^ ẏ~0!ẏ~ t !&dt. ~7!

The transverse velocity is

ẏ5v
hy
N

~8!

and ^h y
2&5Na2/3. We thus obtainDy;Dx;e3/2.

B. Quantitative treatment

These scaling arguments suggest that the longitudinal
the transverse diffusion constants are of the same or
Therefore we expect their ratio to be a universal const
which we calculate below.

We rely on the results obtained in Ref.@5#. The distribu-
tion density functionr(hx ,t) for the end-to-end projection
obeys the following master equation:

]r

]t
5

]

]hx
H ]

]hx
~D* r!2v* ~hx!rJ , ~9!

whereD*5v/3, and

v* ~hx!.v~2hx /N1~const/hx!e
2/3hx

2/3N1/3!.2bx~dhx!,

wherebx5
4
3v/N, dhx5hx2h x

(0), andh x
(0)5^hx& is approxi-

mately defined by the conditionv* (h x
(0))50. The first term
f
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in the curly brackets accounts for the random conformat
of newly created parts of the tube, whereas the second t
describes the~weak! orientation due to the field. A simila
equation can also be written for the distribution of they
projection of the end-to-end vectorhy ; the only difference is
that v* (hy)52v(hy/N)52byhy as there is no field orien
tation in the transverse direction. By rescaling of Eq.~9! we
get

E ^dhx~0!dhx~ t !&dt5C
D*

bx
2 , ~10!

whereC is a universal numerical factor. Using also Eqs.~4!
and ~5! we thus get back the scaling estimate, Eq.~6!.

The analogous correlator for they component is

E ^hy~0!hy~ t !&dt5C
D*

by
2 . ~11!

The ratio of the diffusion constants is then

Dx /Dy54by
2/bx

259/4.

This ratio seems to be in good quantitative agreement w
the measurements@11# on l-DNA in 0.7% agarose gel in the
field regionE51–2 V/cm.

III. DYNAMICS OF A LONG RING POLYMER UNDER
AN ELECTRIC FIELD

In this section we give a simple description of the g
electrophoresis of a ring polymer using reptation ideas.
discuss only usual open ring polymers and do not cons
more complex topological states such as supercoiled rin

A. Equilibrium and reptation dynamics in the absence
of electric field

A ring polymer immersed in a network, but not perm
nently entangled with the network, adopts a branched tr
like conformation at equilibrium@12#. That is why it is a
natural first step to consider the dynamics of a ring polym
before analyzing the branched structures formed by lin
polymers. The excluded-volume interactions do not play a
significant role for the DNA conformation~unless the mo-
lecular weight is extremely large! since this molecule is very
rigid: the ratio of the Kuhn segmentb to the chain thickness
d is ;50. We therefore use the results obtained for id
rings @12#. These are summarized below.

The typical conformation of a ring in a network~gel! is a
branched structure similar to that arising in the classical
lation theory@13#. ~We assume that the gel is homogeneo
throughout the paper. The effect of gel inhomogeneit
might be important for very weak fields; however in th
regime of moderate and strong fields,e.1/N, the inhomo-
geneities just lead to a slight renormalization of the po
size.! The only difference is that the ring polymer pass
twice ~in the forward and backward directions! by each bond
of the corresponding classical ‘‘tree’’~Fig. 1!.

A treelike conformation is characterized by its spatial s
r (N);N1/4 and its backbone lengths(N) that can be defined
as the longest primitive path connecting distant polymer s
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55 791FORMATION OF HAIRPINS AND BAND BROADENING . . .
ments.@ThusN}r (N)4: a classical tree is a fractal with d
mensionD54.# For a classical trees(N);N1/2 in contrast to
s(N);N for a linear chain. There is another important d
ference between linear and treelike conformations: for a
ear chain the primitive path-length fluctuations are we
ds/s;1/N1/2, whereas for a ring these fluctuations are lar
ds/s;1. The spatial statistics of a primitive path~of a given
length! itself is Gaussian andr (N);s(N)1/2.

The ring structure is dominated by small branches
length 1~i.e.,a!: the number of these branches is of orderN.
The number of branches of lengths(N);N1/2 is order of 1.

The reptation dynamics of a ring in a network~with no
external field! is a theoretical issue discussed in a number
publications @14–16#. The basic dynamic quantity is th
longest relaxation time of the chain conformation,t(N). All
theories predict a scaling behavior,t(N);Nz, however,
various exponents have been obtainedz53 @14,15# and
z52.5 @16#. It is probably possible to show rigorously th
z>2.5, and also one could hardly expect thatz.3. Hence
most probably 2.5<z<3. To be definite, in all the estimate
below we use the exponentz52.5, which seems to be in
closer agreement with computer simulations@16#. The self-
diffusion constant of a ring can be obtained using the
sumption that during one relaxation time the ring moves o
its own size@16#: Ds;r 2(N)/t(N);N0.52z5N22.

B. Gel electrophoresis of ring polymers

In the presence of an electric field the total electric fo
is f5eN ~here we assume thatkBT is the energy unit!. In the
limit of an extremely weak fielde→0, the center-of-mass
velocity of the polymer driven by the force isẋ5Dsf , and
the mobility scales as

m;N21. ~12!

Equation~12! is valid if the ring conformation is nearly un
perturbed by the field. In order to estimate the effect of
field on the conformation we compare two situations:~1! free
motion of a ring polymer;~2! conformation of a ring with a
fixedsegment—both in the presence of the field. It is natu
to assume that the conformation of a free chain is less
fected by the field. Therefore the second situation provi
an upper boundary for the chain deformation. The extens
of the ring with a fixed segment in the field direction
negligible if the typical potential energyU;r (N) f;eN1.25

is smaller than one. Hence Eq.~12! is valid in the region
e,e*5N21.25.

Using Eq. ~12! it is easy to see that in the regim
e,e*5N21.25 the time during which the chain drifts in th
field direction on a distance of order of its size,r (N) is much

FIG. 1. Classical treelike structure of a ring polymer in a n
work.
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longer than the relaxation timet(N). In this regime we thus
anticipate no qualitative difference between the chain con
mation in cases~1! and ~2!. On the other hand, during th
time t(N) the ring should already come to a virtual equili
rium with the field. The chain extension in the field directio
Dx can be calculated using equilibrium arguments, assum
a balance between the elastic energy of the ring elonga
Fel;[Dx/r (N)] 2 and the potential energy2 fDx. This leads
to Dx;r 2(N) f , so that

Dx~N!;eN1.5. ~13!

We now consider the regime of stronger field
1.e.e*5N21.25. Let us represent the chain as a set ofN/g
blobs, whereg is defined by the conditioneg1.2551. If the
head blob~i.e., the most advanced in the field direction blo!
were free it would move with the velocity

ẋfree5m~g!e;e/g;e9/5 ~14!

and would create an oriented~along the field! primitive path.
The orientation parameter of its primitive path is@see Eq.
~13!#

h5hb;
Dx~g!

s~g!
;eg;e1/5, ~15!

where the indexb refers to the branched conformation. Th
blobs behind the head blob cannot force it to move fas
since the tension along the primitive path of the chain
always positive so that the tension force must be orien
backward~if other blobs are moving faster than the he
blob, they will leak to the sides creating new branches!.

Let us now consider the possibility that the head blob
moving slower than in a free state because the other b
pull it backward. An extreme situation of that kind is sch
matically shown in Fig. 2.

The head part of the ring of sizeg;e24/5 is only moder-
ately affected by the field, and thus can easily come to eq
librium with the field. Therefore it is stretched in the fie
direction by a factor of order 2. A rearrangement of t
primitive path on larger scales is much more difficult. T
only possibility to change the primitive path on a scalem@g
is to create a hairpin near segmentm ~counting from the
head!; the hairpin then grows and forms a new primitive pa

-

FIG. 2. ~a! The ring is adiabatically squeezing through the ga
G: the number of segmentsn in the shown part of the ring is slowly
increasing. The primitive path is shown by gray.~b! Rearrangement
of the primitive path on the scalem.g: the activation state~only
the primitive path is shown!. The vacated part of the primitive pat
is shown by dots; the new part is bold.
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792 55A. N. SEMENOV AND J.-F. JOANNY
~‘‘eating’’ the old one!. The activation state corresponds
the situation shown in Fig. 2~b! where the lengths of the old
and new primitive paths are comparable. The correspond
barrier isUact(m);em[x(m)2x(m/2)], wherex(m) is the
averaged projection of the end part withm segments. Obvi-
ouslyUact(m)@Uact(g);1 sincem@g. Therefore the relax-
ation on scalesm@g is exponentially slow, and thus is neg
ligible unless the ‘‘velocity’’ dn/dt is exponentially small,
which is not the case. Hence a linear primitive path with
nearly homogeneous orientationhb;r (g)/s(g);e1/5 is
formed. The one-dimensional tensions along the primitive
path is not homogeneous however: it is increasing with
distance from the head ass(m);ex(m). This tension
strongly stretches the middle blobs along the primitive pa
Obviously the stretched middle blobs would move fas
than the unstretched head blob. In order to be more qua
tative, let us consider a completely stretched blob that is t
equivalent to a part of a linear chain. Its velocity in thex
direction is ẋ;m line;h b

2e;e7/5, where mlin is the linear
chain mobility defined by Eq.~3! with the order paramete
hb determined by the leading blob. The velocity is mu
larger than that of the free head blob, Eq.~14!. Thus the
blobs behind the head blob cannot slow it down as they
moving faster themselves, in contradiction with the origin
assumption.

We thus come to the conclusion that the head blob
moving neither faster nor much slower than in a free sta
The average velocity of the ring center of massẋ must co-
incide with the velocity of the head blob. Therefore the m
bility of a ring chain is

m5mb; ẋ/e;e4/5 ~16!

if e.N25/4.
Another important quantity is the timet(e,N) during

which the primitive path~connecting the head and the tail
the ring! is renewed. This time is estimated here from ge
eral arguments that use only the fact that the primitive pat
oriented with an order parameterh;e1/5, Eq. ~15!. We thus
avoid a detailed description of the complex chain conform
tion. The primitive path can be represented as a sequenc
s gates confining the ring. Letn(t) be the number of seg
ments that passes through a given gate. On the averagen(t)
is the same for all gates. The dissipation rate
D5z(dn/dt)2, wherez is the effective friction constant tha
is proportional to the total length of the primitive pathz;s.

The last statement can be verified by calculating the
laxation time of a free ring~in the absence of field,e50!
assuming thatz;s. A complete relaxation is possible
n(t);N. The effective diffusion constant~for the coordinate
n! is Dn;1/z;1/N1/2. This leads to the correct relaxatio
time: t(N);N2/z;N2.5.

The motion of the ring under electric field is driven by th
electric force; the dissipated energy is therefore equal to
work of this force,W;en(t)hs ~herehs is the projection of
the primitive path onto the field direction!. This condition
can be written as* D(t)dt;zn2/t;W. The primitive path
renewal time is obtained withn;N:

t~e,N!;
N

eh
;

N

e6/5
. ~17!
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The ring moves over its size during the primitive pa
renewal time. This gives an estimate of the ring size in thx
direction:

hx; ẋt~N,e!;Ne3/5. ~18!

On the other hand,hx;hs; thus the primitive path length is
s;Ne2/5. Assuming Gaussian statistics of the primitive pa
in the transverse direction we get the transverse size

hy;s1/2;N1/2e1/5. ~19!

Note thathx;hy;N1/4 for e;e*5N25/4, and hx@hy for
stronger fields.

Let us proceed to the calculation of diffusion constants
a ring polymer in the regimee@e* . The crucial notion is that
both hx andhy always strongly fluctuate. The large fluctu
tions ofhy are due to the Gaussian statistics of the primit
path in they direction. The longitudinal fluctuationsdhx are
large because the ring often hooks over an obstacle thus
ating two competing subtrees of comparable sizes. An
ample is given in Fig. 3: bothhx and the center-of-mas
velocity are smaller in conformation~a! than in conformation
~b!. The typical time in a hooked state is againt(e,N). The
size fluctuation is thusdhx;hx .

The fluctuations of the velocityd ẋ on the time scale
t(e,N) are thus of order of the mean velocity
d ẋ;dhx/t(e,N);e9/5. A similar estimate for the transvers
velocity gives: d ẏ[ ẏ;hy/t(e,N);N21/2e7/5. Using Eqs.
~5! and~7! we obtain scaling estimates for the diffusion co
stants:

Dx;~d ẋ!2t~e,N!;Ne12/5, Dy;~d ẏ!2t~e,N!;e8/5.
~20!

IV. DYNAMICS OF A LINEAR CHAIN
IN THE BRANCHED STATE

When a hairpin forms on a linear chain undergoing g
electrophoresis, the head of the hairpin behaves similarl
the head of a ring polymer as the chain in the hairpin ado
a branched conformation. We now study the influence of t
branched structure on the linear chain dynamics.

A. Weak electric fields,e<1

A possible way to form a branched structure is shown
Fig. 4: the middle part of chain (n) that leaked out of the
original tube adopts a treelike conformation identical to th
of a ring polymer comprisingn11 segments. This illustrate

FIG. 3. Typical conformations of a ring hooked over an obsta
on the largest scale~the masses of parts 1 and 2 are comparabl!.
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55 793FORMATION OF HAIRPINS AND BAND BROADENING . . .
the general nonlinear conformation of a linear chain that
cludes a treelike core with two tails. Since the mobility of
treelike part is higher than that of linear parts@compare Eqs.
~16! and ~3!#, the branched core must be ahead of the t
that follow the primitive path created by the core. The o
entation parameter of this primitive path is thush5hb;e1/5.
The length of the tails is determined by the fact that th
must move with the same velocity as the branched p
ẋ5mbe, where mb;e4/5. Let us consider the balance o
forces acting on a tail consisting ofM segments by project
ing all the forces onto the primitive path. The relevant forc
are the electric forcef el , the friction forcef fr , and the ten-
sion forces at the head~near the branched part! s(M ), and at
the very ends~0!:

f el5 f fr1s~0!2s~M !. ~21!

The end tension force,s~0!5s0;1 ~that iskT/a!, was first
considered by Doi and Edwards~see Chap. 6, p. 208 of Re
@9#!. The nature of this force is purely entropic: it is favo
able for a chain tail to go out of any given tube. It is the for
of Doi and Edwards that prevents a chain from a colla
inside the tube during reptation. Some interesting dyna
implications of this force have been considered in Ref.@17#.
In our case the force of Doi and Edwards suppresses for
tion of hairpins in the tail parts: the tails are almost co
pletely extended along the primitive path,s(M );M . Obvi-
ously the tension must vanish near the branched part:s(M )
50.

The friction force is f fr;vM , where v; ẋ/hb
5mbe/hb;e8/5 is the curvilinear velocity. The electric forc
is f el;ehbM;e6/5M . The friction force is thus negligible in
comparison with the electric force sincee,1. Then Eq.~21!
can be rewritten asf el.s~0!, so that the equilibrium tail
length isM;e26/5. The conditionM5N/2 defines a critical
field e** ;N25/6. The branched conformation is unstable f
e,e** but is stable for higher fields. In the regimee,e**
the tails grow until the head branched core disappears,
finally the chain goes back to a linear conformation. T
whole process is driven by the force of Doi and Edwards.
the other hand, ife@e** then the tails are short,M!N, so
that nearly the whole of the chain is branched~see Fig. 5!.

The mobility and the diffusion constants in these regim
are the same as for a ring polymer~it is easy to show that the
effect of short tails on these parameters is negligible!: they
are given by Eqs.~16! and ~20!. Thex projection of the tail
part isMhb;1/e, i.e., it is larger than the corresponding si
of the branched partNe3/5 in the regione** ,e,N25/8. The
tails are completely negligible ife.N25/8.

FIG. 4. The middle chain part leaks out of the tube.
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B. Large electric field, e>1

For e;1 the results obtained for weak fields can still
used within scaling accuracy; they lead to the following e
timates for the mobility, the relaxation time, the diffusio
constants, and the chain sizes

m;1, t~1,N!;N, hx;N, hy;N1/2,

Dx;N, Dy;1.

The chain is almost completely extended in thex direction
for e;1, although its conformation is highly branched.~The
fractal branched chain structure was originally proposed
the regime of strong fields in Ref.@7#.! A chain cannot be
extended more than its contour length, and its mobility c
not become larger than the mobility of one free segm
m1;1. Therefore fore.1 we expect thatm;1, hx;N in
agreement with the results of Ref.@7#. The relaxation time is
t(e,N);N/ ẋ5N/me;N/e. The fluctuations of the center
of-mass velocityd ẋ are of the order of the average veloci
ẋ;e for the very same reasons as discussed for weaker fi
in Sec. III B. Therefore, the longitudinal diffusion consta
can be estimated asDx;(d ẋ)2t(e,N);eN. The transverse
diffusion constant isDy;h y

2/t(e,N).
In order to estimate the transverse sizehy we consider the

head part~of length n! that is falling down the field with
velocity v;e. The electric force acting on this part i
f el5en, the friction force isf fr52vn ~since the friction con-
stant isn in the reduced units!. We assume that̂v&5Ce,
whereC,1 is a numerical factor accounting for the slowin
down effect of the hooked conformations~see Fig. 3!. There-
fore the total forcef5 f el1f fr;en is directed along the field
~this force is balanced by the chain tension!. A deviation of
the very head point of the falling hairpin on distancey in a
transverse direction would result in a restoring for
f y52(y/n) f.2ey. Although the falling part is almos
completely straight, the gel does create a transverse f
acting on this part as the gel pore structure is random
force created on the scale of one pore is of the order of 1
is randomly oriented. The total typical force acting on then
part is thusf gel;An. Assuming virtual equilibrium between
f gel and f y we gety;An/e. Therefore the chain size in th

FIG. 5. A typical conformation of a linear chain in the branch
state: branched middle part (N22M ) with two parallel tails (M ) of
nearly equal length. The very end parts of each tail are rand
Gaussian coils; the length of these parts is determined by tu
length fluctuations.
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transverse direction ishy;(N/n)1/2An/e;AN/e. The re-
sults fore@1 can be thus summarized as

m;1, t~e,N!;N/e, Dx;eN, Dy;1/e,

hx;N, hy;N1/2/e. ~22!

V. NUCLEATION OF HAIRPINS

As the hairpins play a dominant role in the chain struct
at high electric fields, it is important to discuss how th
appear. This is due to a nucleation process that is descr
in this section.

A. Mechanical picture

We study the reptation of a linear chain along a line
tube in the weak-field regime, 1/N,e,1. The tube is ori-
ented along the field with an order parameterh;e1/2 ~see
Sec. II A!. We want to discuss the stability of the reptatio
motion with respect to formation of hairpins. This is done
considering a small hairpin of sizen located in the middle of
the chain~Fig. 6!.

The chain tensions vanishes at the very head point (H)
of the hairpin. Therefore the partsAH andHB are moving
nearly independently. The total electric force~projected onto
the tube axis! acting on the part AH is
f 15eh(N2n)/21en/2, where the first term corresponds
the partAA8 @consisting of (N2n)/2 links#, and the second
term is due to the half of the hairpin (A8H), which is as-
sumed to be completely stretched along the field.~This sim-
plifying assumption is actually irrelevant for the final resu
It can be easily checked that it is the stretched configura
that leads to the lowest-energy barrier.! The effective electric
force acting on the second part (HB) is f 2
5eh(N2n)/22en/2. The curvilinear velocity of the par
AH is v15[ f 12s(A)1s(H)]/ z, wherez5N/2 is the cur-
vilinear friction constant; the velocity of the second part
v25[ f 21s(B)2s(H)]/ z. The hairpin growth ratedn/dt is
equal to v12v2 . Taking into account tha
s(A)5s(B)5s0;1 ~the force of Doi and Edwards! and
s(H)50 we get

dn

dt
5

en22s0

z
. ~23!

FIG. 6. A hairpin nucleus in the middle of a reptating chain. T
hairpin is oriented in the field direction. The chain tension vanis
at pointH. The partsAH andHB are virtually independent.
e

ed

r

n

Thus the hairpin tends to disappear ifn,n* , but it grows if
n.n* , wheren*;1/e is the critical nucleus size.

Therefore the reptation motion is only metastable for a
fixed e as the critical hairpins should appear with a finite ra
G that depends one. Once created the critical hairpins gro
and develop into a treelike branched structure considere
the Sec. IV; this treelike structure is stable ife.e** . Finally
after a long enough timet;1/G nearly all the chains take a
treelike conformation.~See Sec. VII for more discussion o
this point.!

The formation of a critical hairpin is an activation pro
cess. The corresponding activation barrierU is equal to the
work that an external forcef ext applied to the tip-pointH
should do against the force of Doi and Edwards. In the pr
ence of the external force the right-hand side~rhs! of Eq.
~23! takes the form~en1 f ext22s0!/z, so that the adiabatic
condition (dn/dt50) leads tof ext52s02en, and

U5U05E f ext~n!dn;e~n* !2;s0
2/e. ~24!

Using the same kind of arguments it is possible to show t
U does not nearly depend on the position of the nucl
along the chain~although hairpin formation is slightly pro
moted near the chain head!. Therefore the rate of critica
hairpin formation is

G0}exp~2U !}exp~2C/e!, ~25!

whereC is a numerical constant.
In Sec. V B we consider another mechanism of hairp

formation that leads to a much higher rateG.

B. The effect of tube orientation fluctuations

The reptation motion of a linear chain is driven by th
effectiveelectric forcef5eh per unit length of the tube~the
primitive path!. So far we have assumed that the tube orie
tation ishomogeneous, so thath5h(s) is constant. In real-
ity, however, the tube conformation is random and is o
ented only on the average. Therefore the order param
fluctuates along the tube:h(s)5h01dh(s), whereh0;e1/2

is the mean value. The effective forcef (s)5eh(s) is thus
also fluctuating giving rise to fluctuations of the tensions
along the tube: in some parts the tension is higher than
average values0;1, in some parts it is lower. The barrier fo
hairpin formation is proportional to the square of thelocal
tension: in the general cases0 in Eq. ~24! should be replaced
by the local tensions and the hairpin formation is dramat
cally accelerated in the regions of lower tension. Actua
the optimal way to create a hairpin is to wait for a lar
enough tube orientation fluctuation leading to zero tension
some part of the tube—the hairpins would then immediat
appear in this part: below we show that the rate of creation
such fluctuations is much higher than the rateG0 given by
Eq. ~25!.

Let us estimate the typical tension fluctuationsds induced
by the fluctuations of tube orientation on a scalen along the
tube. The total effective force acting on the chain fragm
inside the tube section of lengthn ~say between the point
s50 ands5n, wheres is the coordinate along the tube! is
F5eh(n), whereh(n)5* 0

nh(s)ds5h01dh is thex projec-

s
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tion of the tube section of lengthn andh05h0n. The Gauss-
ian statistics of the tube fragments implies that

^~dh!2&5 1
3n. ~26!

The typical fluctuation of the force isdF5edh;eAn. The
curvilinear velocity of the chain section isv5F/z5F/n,
wherez5n is the friction constant. The average velocity
v05eh0;e3/2. The typical velocity fluctuation isdv
;dF/n;e/An. Note that the forcedF is acting on the chain
section during the timet it passes the given tube part 0,s
,n: t;n/v05n/eh0 . The fluctuation of the position alon
the tube of the chain section ofn monomers, which is in-
duced bydF, can be thus estimated asds;tdv;An/h0 .
Since conformations of different tube parts are statistica
independent, the effective electric forcesdF acting on neigh-
boring chain sections~of lengthn! are not correlated. There
fore ds can also be interpreted as a typical change of
curvilinear distance between the neighboring sections of
n. The corresponding fluctuation of tension
ds;ds/n;n21/2/h0 . Note thatds is increasing as the scal
n is decreased.

The above estimate is valid ifds is smaller than the origi-
nal force fluctuationdF, that is ifn.n0;1/eh0 . On shorter
scales,n,n0 , the electric force fluctuation is directly ba
anced by the fluctuation of the tension force:ds;dF
;eAn. Thereforeds is dominated by fluctuations on th
scale n0 : the typical tension fluctuation is ds
;ds(n0);e1/4, or Dd[^ds2&;e1/2.

If the tension vanishes at some point~which implies a
large fluctuationds5s0!, then a hairpin starts to grow at th
point. It grows up to a size of ordern0 during the time
t0;n0/v0 , which is simultaneously the Rouse relaxati
time of ann0 fragment (t0;n 0

2). The hairpin then continue
to grow ~the growth being driven by the electric field! since
n0;1/e3/2 is much larger than the critical nucleus si
n*;1/e. @Note that the effect of thermal noise is negligibl
the typical thermal fluctuation of the curvilinear length of
n fragment inds;n1/2, so thatdstherm;ds/n;n21/2; for the
scalen;n* we thus getdstherm;e1/2, which is much smaller
than the typical fluctuation~e1/4! induced by tube orientation
fluctuations. Thermal fluctuations on smaller scales are ir
evant as they cannot possibly lead to the formation of a c
cal hairpin of sizen* .#

We thus need to estimate the probability,P(0), that s
vanishes at some point. The tension fluctuation is prop
tional to the size fluctuation:ds}dF}dh(n0). On the other
hand, the distribution ofdh(n0) is Gaussian in the region
dh2/Dh!n0 , where Dh5^dh2&. Therefore ds[s2s0 is
also characterized by a Gaussian distribution in the reg
ds2/Ds!n0 , i.e., ds!1/e1/2: The probability density func-
tion is P(s)5const3exp[2(s2s0)

2/(2Ds)]. Hence the
probability that the tension vanishes at some point
P(0)}exp(2Ũ), where

Ũ5
s0
2

2Ds
;e21/2. ~27!

Note that the apparent barrierŨ is much lower thanU0 , Eq.
~24!. Therefore the hairpin formation process is domina
by the fluctuations of the tube orientation.
y

e
e
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This scaling analysis is supported by the quantitat
treatment of the linear tension fluctuations presented in
Appendix, where it is shown thatDs5 1

6s0(e/h0)e
1/2 and

Ũ.2.1s 0
1/2e21/2.

We thus conclude that the rate of nucleation of a hair
from a linear state is

G}exp~22.1s0
1/2/e1/2!. ~28!

The parameters0 depends on the gel structure. Howeve
ideally it does not depend on the gel-pore sizea if the gel
has large pores,a@b. A naive tube model representing th
tube as a sequence of Gaussian blobs of sizea implies
that s053 „since the elastic energy of thenth blob is
3kBT[s(n)2s(n21)]2/(2a2).

VI. DISCUSSION

In the previous sections we considered the mechanism
formation of a branched chain structure from a linear co
figuration, and the effect of this transition on the electr
phoretic mobility. The theoretical treatment was based on
implicit assumption that the branched structure, once
peared, remains stable. Let us discuss this assumptio
more detail focusing on the weak field regimee** ,e&1.

To clarify the point let us try to imagine a process
transformation of a treelike structure into a linear one. O
simple possibility is shown in Fig. 7: the chain in th
branched conformation is hooked over an obstacle, so
two chain parts are competing. If the parts are almost eq
they both will move forward thus increasing the tension n
point A, and finally the chain conformation becomes linea

Two points are important here. First, the time duri
which the whole mass will flow to the winning~larger! part
is t(e,N), whereas the time needed for a chain to exte
itself to a linear conformation is much longer since this p
cess implies that the treelike chain will move on many
own sizes. The second point: even if the chain happen

FIG. 7. ~a! The chain is hooked over an obstacleA. ~b! After
some time both parts will extend and become essentially linear~c!
Then one~larger! part wins and a linear conformation is finall
created.
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796 55A. N. SEMENOV AND J.-F. JOANNY
transform to a linear state, there is no reason for the t
orientation parameterh right after the transformation to b
the same as for equilibrium linear stateh l . In fact, one
should anticipate that the tube orientation at first will be
the order ofhb@h l . When the chain starts to reptate in th
more oriented~and also inhomogeneously oriented! tube, it
moves faster than an equilibrium linear chain and thus c
ates new tube parts with even weaker orientation thath l ~the
tube order parameter at the tip is inversely proportiona
the curvilinear velocity@5#!. Therefore the head part of th
tube is much less oriented than the tail part, so that the
fective electric force per segment of the head part is sma
than for the tail part. But both parts have to move with t
same curvilinear velocity. Therefore, the tail part will pu
the head part, the pushing force being proportional to
total friction, that is proportional to molecular weight. Obv
ously the pushing force could easily decrease the linear
sion in the middle of the chain to formally negative value
which means that hairpins leak out of the tube, and that
treelike structure develops again. We thus conclude tha
irreversible transformation of the treelike structure to a lin
one must be extremely unlikely. The transformation impl
that not only the chain conformation should become line
but also that the tube must be homogeneously oriented
the order parameterh l , which is much lower than that of th
branched structure. Therefore, each blob of sizeg;e24/5 in
the branched structure must be appreciably less oriented
on the average. For each blob the probabilityp1 to have a
low orientation remains finite~it is not exponentially small!.
The number of primitive path segments per blob isl 15g1/2

~see Sec. III A!. If we ignore the correlations between th
orientations of the different tube parts, the probability th
the whole tube has a lower orientation ispbl}(p1)

N/ l1

;exp(2const3Ne2/5). ~In other words, we assume here th
a lower orientation of a blob does not increase the proba
ity that a new blob appearing at the tip is also less orien
than on the average. Actually we expect an opposite
dency: at least we know that it is opposite for linear cha
@5#.! This probability is always much smaller than the pro
ability of the reverse transformation~linear to branched!
which is plb}exp~2const3e21/2!, see Eq. ~28!, since
Ne2/5@e21/2 in the region e.e** ;N25/6, where the
branched structure itself is stable. Thus transitions from
branched to the linear state can be neglected in this reg

The main results of this paper are partially based on
analysis of the effect of the electric field on the orientati
parameter of a circular polymer chain given in Sec. III B. W
showed that the effect becomes noticeable if the typical
tential energy of a ring in the fieldeNr(N) wherer (N) is the
ring size, becomes larger than 1 (kBT). This leads to the
critical field e*;N25/4. Note that this criterion is not valid
for linear chains: it would imply thate*;N23/2 as for linear
chainsr (N);N1/2, instead of the correct result predicted b
the BRF model,e*;1/N @4,5#. The difference is connecte
with the fact that in the linear case the electric field orie
effectively not the whole chain but only its end part th
fluctuates forwards and backwards along the tube trying
different conformations. The length of this part is of the o
derN1/2, i.e., it is much shorter than the whole tube. In t
case of a ring polymer the situation is different: here both
average primitive path length and its typical fluctuation a
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of the same order:s(N);ds(n);N1/2, so that the field ef-
fectively orients the whole chain.

One must also keep in mind that our understanding of
reptation motion of ring polymers remains rather rough. A
the scaling laws derived here are based on the assump
that are compatible with the scaling model proposed
Obukhov, Rubinstein, and Duke@16#. The model may turn
out not to be exact. This would affect the numerical values
the exponents predicted in the present paper. However
believe that the main qualitative results would remain va
in particular that the orientation parameter is higher fo
branched conformation.

We also assumed that the statistics of DNA molecule
ideal, i.e., we did not take into account any swelling of DN
coils by excluded volume interactions. For a coiled conf
mation ~zero electric field! the degree of swelling is deter
mined by the Fixman parameterz;Nb

1/2B2/b
3, where

B2;b2d is the typical excluded volume for two Kuhn seg
ments,d is the thickness of the DNA chain, andNb is the
number of Kuhn segments per chain. Therefo
z;0.02Nb

1/2. The swelling might be important ifz*1, that
is for Nb*2500; this length corresponds to;106 bp ~base
pairs!. The excluded volume interactions are less import
in the regime of high fields, where the conformation is e
tended. On the other hand, binary contacts are more prob
in the more compact branched state. Since the chain is
tended on the average on scales larger than the blob
g;e24/5 we only need to estimate the effective Fixman p
rameter for a ‘‘branched blob’’g ~assuming thata;b!:
z̃;g2B2/r (g)

3, where r (g);bg1/4. Thus z̃;(d/b)1/e, so
that the effect of the excluded volume interactions is ne
gible (z̃,1) if e.d/b;0.02.

Note also that we assumed that the network structur
ideal. In particular we neglected any effect of dangling en
~tails! in the gel, which might slow down the dynamics of
circular polymer in a weak field regime@22#.

Finally we discuss thee dependencies of the diffusio
constantsDx and Dy , assuming that the transition to th
treelike conformation is controlled by experimental timet,
i.e., by the productGt. The fraction of chains in the linea
state is roughlye2Gt, and in the branched state, 12e2Gt.
The transverse diffusion constant is simply the weighted
erage between the linear~e3/2! and the branched~e8/5! values:

Dy;e2Gte3/21~12e2Gt!e8/5.

ThusDy is increasing withe in the region 1/N,e,1 except
in the vicinity of the transition point (Gt;1) where it de-
creases by a factore3/2/e8/55e21/10. The cross-over fieldec ,
determined by conditionGt;1, is small if the experimenta
time is large compared with the segmental timet0:

ec;1/~ ln t !2 ~29!

@see Eq.~28!#. In the region of strong fields~e.1! the trans-
verse diffusion constant decreases as the field is further
creased:Dy;1/e.

The behavior of the longitudinal diffusion constant
more complicated. Here we should take into account the
that in the regionGt;1, where the two states~linear and
treelike! compete, the electrophoretic band is additiona
broadened because each chain part of the time is mo
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55 797FORMATION OF HAIRPINS AND BAND BROADENING . . .
with the velocity v l5m le, and part of the time—with the
velocity vb5mbe. As a result the chain displacements a
distributed ~more or less homogeneously! between
Dxl5m let andDxb5mbet. The apparent diffusion constan
in this region is thus

Dx;~Dxb2Dxl !
2/t;e2~mb2m l !

2t;e18/5t. ~30!

On the other hand, in the regionsGt!1 andGt@1 the dif-
fusion constant is always increasing with the field: In the
regionsDx is determined by the dynamics in the linear a
branched states, respectively, henceDx;e3/2 for Gt!1,
Dx;Ne12/5 for Gt@1 @see Eqs.~6! and ~20!#. This qualita-
tive behavior persists in the regime of strong fields,e.1,
whereDx;eN @see Eq.~22!#.

We assume that the experimental timet is longer than the
drift time t5N/v;N/e3/2 of the linear state. ThereforeDx
shows a maximum in the regionGt;1 since Eq.~30! im-
plies that Dx.Ne2.1, i.e., it is larger than the value
Dx;Ne2.4 inherent for the branched conformation ate@ec .
This prediction is in agreement with some experiments@18#
and computer simulations@19#.

Note that in the regimee.ec the longitudinal diffusion
constant is always larger than the transverse diffusion c
stant by a factor proportional toN. The ratioDx/Dy is in-
creasing withe in the regione.ec . This result is in a quali-
tative agreement with observations forl-DNA @11#.

VII. CONCLUSIONS

The main result of this paper is that the normal reptat
motion of a charged polymer chain driven by an electric fi
is not absolutely stable even if the field is weak,e,1: hair-
pins nucleate and develop into a treelike branched struc
with the rateG defined in Eq.~28!.

The branched structure is a fractal as suggested in
@7#. In the region of weak fields~e,1! the structure is char
acterized by an additional scale—the blob s
g5g(e);e24/5. Inside these blobs~on a scaleDn,g! the
conformation is nearly isotropic and is characterized b
unique fractal dimensionD54 in both longitudinal and
transverse directions:Dr x(Dn);Dr y(Dn)}(Dn)

1/4. For
larger scalesDn@g the structure is strongly anisotropic
Dr x}Dn, Dr y}(Dn)

1/2, so that the fractal dimensions a
different:Dx51, Dy5

1
2 . The internal fractal characteristic

of the structure are also different on short (Dn,g) and long
(Dn.g) scales. In particular, the longest primitive pa
length of a branchDs, scales asDs}(Dn)D8, whereD85
1
2 inside theg blobs, andD851 for larger scales.
The treelike structure is stable ife.e** ;N25/6. Thus

after a relaxation time 1/G nearly all chains would transform
to a treelike state. The mobility in the branched st
mb;e4/5 is higher than the mobility in the linear state,m l;e.
Therefore inequilibrium conditions we expect that the mo
bility as a function ofe should increase in a vicinity ofe**
by a factore21/5;N1/6, which is at least formally large~ac-
tually however it is hardly larger than three as norma
N&103!. This increase should also show in the depende
of mobility vs N for N** ;e26/5. This result thus provides
an alternative explanation of the band inversion phenome
observed in many experiments: molecules that are lon
e
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thanN** are moving faster than slightly shorter chains.
In the regime of very weak fields the relaxation time 1G

becomes exponentially large, and can easily exceed the
t of the experiment or computer simulation. Then a nons
tionary mobility would be observed:m.m l1Gtmb , where
Gt!1 is the fraction of chains that transform to the branch
state duringt. Then the region where the mobility increas
with the field is determined by the timet, rather than by the
molecular weight.

An experimental test of the possibility of the linear cha
to the branched chain transition would be very desirab
While a direct observation of the DNA conformation mig
not be easy, we suggest the following tentative experim
intended to verify the main prediction in the weak field r
gime e** ,e,1: Let us apply an oscillating fielde to a sys-
tem of DNA molecules in a gel. The period of oscillation
should be longer than the tube renewal time of a linear ch
t;N/e3/2. Then the amplitude of the induced DNA oscilla
tions should saturate during a few periods. However i
field-induced transformation to the branched state does h
pen, then the amplitude should appreciably change~increase!
on a much longer time scale 1/G, which is exponentially
dependent one. Thus measurements of the time and the fie
dependence of the amplitude would reveal a conformatio
change.

We hope that future experiments and computer simu
tions can provide a more quantitative basis to the main p
diction of this paper that the nonlinear treelike conformatio
are important even for weak fields.
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APPENDIX A: THE CHAIN TENSION FLUCTUATIONS

We calculate here the mean-square fluctuationDs of the
chain tension in a linear chain conformation. The biased r
tation dynamics~including Rouse fluctuation modes insid
the tube! is governed by the following master equation th
was analyzed in Refs.@20,21,5#:

z1
]s~n,t !

]t
52

]s

]n
1 f ~s!, ~A1!

wheres(n,t) is the curvilinear coordinate of thenth segment
~the segments are counted from the chain head to the!
s52s0]s/]n is the linear chain tension,z151 is the fric-
tion constant per segment~in units kBTt0/a

2!, and f (s)
5eh(s) is the effective electric force per segment.~We ne-
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glect a dependence ofz1 on one-dimensional density]n/]s
since the typical fluctuations of the density are small.! The
boundary conditions are

s~0!5s~N!5s0 . ~A2!

The randomthermal force acting on the segments is n
glected as explained in Sec. V B. Equation~A1! is still sto-
chastic since the forcef (s) is random: f (s)5 f 01d f (s),
wheref 05eh0 is the mean force, andd f (s)5edh(s). Since
orientations of the tube segments are statistically indep
dent, the random sourcedh(s) is characterized by the fol
lowing correlation function:

^dh~s!dh~s8!&5 1
3d~s2s8!. ~A3!

Note that Eq.~A3! is entirely consistent with Eq.~26!.
The system of equations~A1!–~A3! can be rescaled to

standard form using the following linear substitution
s→S5s/n0 , n→n5n/n0 , t→t5t/t0 , andd f→j5d f / f 0 :

]S~n,t!

]t
5

]2S

]n2
111j~S!, ~A4!

]S

]n
521 for n50, n5N/n0 , ~A5!

^j~S!j~S8!&5Djd~S2S8!, ~A6!

wheren05s0/ f 0 , t05s0/ f 0
2, and

Dj5
e2

3 f 0s0
. ~A7!

If we formally put j[0, then the solution of Eqs.~A4! and
~A5! is trivial: S0(n,t)5t2n. Let us consider the random
forcej as a perturbation that slightly affects the chain mot
~this is true since according to the analysis given in Sec. V
the typical tension fluctuationds induced by the random
force, is small!: S(n,t)5t2n1w(n,t). Up to first order in
the perturbation approach, we can substitutej(S) by
j(S0)5j(t2n). The quantity of interest isDs(n)
5^ds2&5s 0

2^(]w/]n)2&. It is proportional toDj :

Ds5s0
2Dj I ~n!/2,

wheren is the reduced distance from the head, and
tt.

es

v.

E

n-

:

B

I ~n!5
2

Dj
K S ]w

]n D 2L
is a universal function ifN/n0@1. The system of Eqs.~A4!–
~A6! with j~t2n! instead ofj(S) can be solved using the
standard Rouse-mode analysis. The result is

I ~n!511
4

p E
0

` x sin~nx!

12x2 Fe2nx2
2

11x2
e2nx2Gdx.

~A8!

In particular I→1 for n→`. The plot of I (n) is shown in
Fig. 8.

Therefore the lowest barrierŨ for the hairpin formation,
defined by Eq.~27!, corresponds to largen:

Ũ5
s0
2

2Ds
5

1

Dj I ~`!
5
3 f 0s0

e2
.

Finally we take into account thatf 05eh0 , where the mean
order parameter is@5# h0.0.71s0

21/2e1/2. Thus we get

Ũ.2.1
s0
1/2

e1/2
. ~A9!

FIG. 8. The dependence of the reduced mean square of th
linear tensionI as a function of the reduced distance from the chain
headn5n/n0 .
ys.
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